# 31E00700 Labor Economics: Lecture 3

Matti Sarvimäki

5 Nov 2012

## First Part of the Course: Outline

- Supply of labor
  - static labor supply: basics
  - static labor supply: benefits and taxes
  - 3 intertemporal labor supply (today)
- Demand for labor
- 1 Labor market equilibrium

- What parameters of interest do reduced-form regressions on labor supplyon wages identify (like the ones covered in lect 1&2)?
  - MaCurdy (1981): None. These estimates are a mix of income effects, intertemporal substitution effects, and (compensated) wage elasticies. "An Empirical Model of Labor Supply in a Life-Cycle Setting." Journal of Political Economy, 89(6), 1059-1085.

# Intertemporal Models

- What parameters of interest do reduced-form regressions on labor supplyon wages identify (like the ones covered in lect 1&2)?
  - MaCurdy (1981): None. These estimates are a mix of income effects, intertemporal substitution effects, and (compensated) wage elasticies. "An Empirical Model of Labor Supply in a Life-Cycle Setting." Journal of Political Economy, 89(6), 1059-1085.
- Life cycle models differentiate between wage changes that are
  - Evolutionary (movements along profile)
  - "Parametric" (e.g. temporary tax cut)
  - Profile shifts (changing wage rate for every period)
- Basic idea: workers shift hours between low-wage and high-wage periods

# Why Does Intertemporal Labor Supply Matter?

### Business cycles

• an extreme view: recessions reflect fluctuations in the rate of technological progress → sometimes wages low due to exogenous reasons  $\rightarrow$  people choose to consume more leisure [so, the Great Depression was really the Great Vacation...]

#### Retirement decisions

- Lifetime income affected by the timing of retirement
- Wage changes have a substitution and income effect (if pension benefits constant)
- An increase in pension benefits reduces the price of retirement

- Stylized Facts
- Brief overview of alternative approaches
- Three models and a field experiment

# Wage Profiles (1977-1989, U.S.)



Annual averages of log wages for six cohorts using the 1977-1989 March CPS data. Each line tracks the wage profile of a single cohort over the 13 year sample period. Source: Card (1994): "Intertemporal Labor Supply: An Assessment"

# Wage Profiles: Finnish manufacturing workers (1990-2002)



Age profiles of hourly piece-rate and time-rate earnings for men and women in the Finnish manufacturing worker population during 1990-2002. Source: Pekkarinen, Uusitalo (2012): Aging and Productivity: Evidence from Piece Rates. IZA DP 6909

## Hours of Work over Life Cycle (2005, U.S.)



Annual hours of work among those who are working.

Source: Borjas Figure 2-21



# Labor Force Participation over Life Cycle (2005, U.S.)



Source: Borjas Figure 2-20



# Hours of Work over Life Cycle (1977-1989, U.S.)



Annual averages hours. Source: Card (1994): "Intertemporal Labor Supply: An Assessment"



# Wage and Hours Profiles

- Wages and hours of work (conditional on participation)
  - increase until roughly mid-30s
  - remain guite constant until early-50s
  - decline afterwards
- A simple explanation
  - lifetime income determined by the entire wage profile
  - price of leisure determined by the current wage
    - → leisure is cheap when young/old
- Note that the decline of participation rates after mid-50s (and thus average hours including zeros) is much more rapid than the decline of wages.

- Dominant: dynamic labor supply with perfect capital markets
  - Friedman (1957), Lucas and Rapping (1970), MaCurdy (1981)...
  - Keane, 2011. "Labor Supply and Taxes: A Survey," Journal of Economic Literature 49(4): 961-1075
- Examples of alternative approaches
  - Contracting (e.g. Abowd and Card 1987, 1989)
  - "Behavioral" (e.g. Camerer at al. 1997)

# Alternative Approaches

- Dominant: dynamic labor supply with perfect capital markets
  - Friedman (1957), Lucas and Rapping (1970), MaCurdy (1981)...
  - Keane, 2011. "Labor Supply and Taxes: A Survey," Journal of Economic Literature 49(4): 961-1075
- Examples of alternative approaches
  - Contracting (e.g. Abowd and Card 1987, 1989)
  - "Behavioral" (e.g. Camerer at al. 1997)
- Challenges for empirical work
  - Theory about transitory and anticipated changes in wages (but real shocks tend to affect lifetime income and may not be anticipated)
  - Wages determined by supply and demand (endogeneity problems)
  - Institutional constraints (workers not free to adjust working hours)

- Structural life-cycle models
  - e.g. Eckstein and Wolpin (1989), French (2005)
  - advantages: solves everything
  - critisism: requires a lot of assumptions & simplifications, identification not transparent
- "Reduced form" models testing implications of frictions
  - e.g. Beadry and Dinardo (1995), Ham and Reilley (2002), Chetty (2010)
- High frequency studies
  - e.g. Camerer et al. (1997), Faber (2005), Fehr and Goette (2007)
  - advantages: transparent identification
  - critisism: external validity

# The Experiment (Fehr and Goette, 2007)

- Fehr and Goette study the intertemporal labor supply among
   42 bicycle messengers working in a firm where
  - earnings a fixed percentage of daily revenues (no fixed-wage)
  - 5-hour shifts (and no-one works two shifts per day)
  - workers commit to some shifts, but can flexibly add more
  - within a shift, workers can choose their effort (how fast to ride, whether to accept delivery offers)

# The Experiment (Fehr and Goette, 2007)

- Fehr and Goette study the intertemporal labor supply among
   42 bicycle messengers working in a firm where
  - earnings a fixed percentage of daily revenues (no fixed-wage)
  - 5-hour shifts (and no-one works two shifts per day)
  - workers commit to some shifts, but can flexibly add more
  - within a shift, workers can choose their effort (how fast to ride, whether to accept delivery offers)
- The experiment
  - Participants randomly allocated to groups A and B
  - Sept '00: A paid 25% more of daily revenues, B paid as usual
  - Nov '00: A paid as usual, B paid 25% more of daily revenues
- Fehr and Goette discuss the results of this experiment in the light of three alternative models



### Individuals maximize lifetime utility

$$U_0 = \sum_{t=0}^{I} \delta^t u(c_t, e_t, x_t)$$

where  $\delta = \frac{1}{1+\rho} < 1$  is the discount factor,  $c_t$  is consumption,  $e_t$  is the amount of work (effort) provided and  $x_t$  a variable affecting preferences at period t.

### Individuals maximize lifetime utility

$$U_0 = \sum_{t=0}^{I} \delta^t u(c_t, e_t, x_t)$$

where  $\delta = \frac{1}{1+\rho} < 1$  is the discount factor,  $c_t$  is consumption,  $e_t$  is the amount of work (effort) provided and  $x_t$  a variable affecting preferences at period t.

### ... subject to a lifetime budget constraint

$$\sum_{t=0}^{I} \frac{\hat{p}_t c_t}{(1+r)^t} = \sum_{t=0}^{I} \frac{\hat{w}_t e_t + y_t}{(1+r)^t}$$

where  $\hat{p}_t$  is price of the consumption good at period t, r is the interest rate (assumed constant),  $\hat{w}_t$  is the wage rate at time t and  $y_t$  is non-labor income.



#### First-Order-Conditions

$$u_{c_t}(c_t, e_t, x_t) = \lambda \left(\frac{1+\rho}{1+r}\right)^t \hat{p}_t$$
$$-u_{e_t}(c_t, e_t, x_t) = \lambda \left(\frac{1+\rho}{1+r}\right)^t \hat{w}_t$$

where  $u_z$  is the derivative of u (.) with respect to z. To derive these FOCs, note that the Lagrangian is  $\mathcal{L} = \sum_{t=0}^{T} \delta^t u\left(c_t, e_t, x_t\right) - \lambda \sum_{t=0}^{T} \left(\hat{w}_t e_t + y_t - \hat{p}_t c_t\right) (1+r)^{-t}$  and  $\delta = \frac{1}{1+\alpha}$ .

#### First-Order-Conditions

$$u_{c_t}(c_t, e_t, x_t) = \lambda \left(\frac{1+\rho}{1+r}\right)^t \hat{p}_t$$

$$-u_{e_t}(c_t, e_t, x_t) = \lambda \left(\frac{1+\rho}{1+r}\right)^t \hat{w}_t$$

where  $u_z$  is the derivative of u (.) with respect to z. To derive these FOCs, note that the Lagrangian is  $\mathcal{L} = \sum_{t=0}^{T} \delta^t u\left(c_t, e_t, x_t\right) - \lambda \sum_{t=0}^{T} \left(\hat{w}_t e_t + y_t - \hat{p}_t c_t\right) (1+r)^{-t}$  and  $\delta = \frac{1}{1+\rho}$ .

In words, consumption and effort at period t are determined by

- the marginal utility of litetime wealth  $(\lambda)$ ,
- discount  $(\rho)$  and interest (r) rates
- ullet and the current price of consumption  $(\hat{p}_t)$  and effort  $(\hat{w}_t)$



Useful thing to note: The intertemporal maximization problem corresponds to the static problem of maximizing

$$v(e_t, x_t) = \lambda w_t e_t - g(e_t, x_t)$$

where  $w_t = \left(\frac{1+\rho}{1+r}\right)^t \hat{w}_t$  is the discounted wage in period t and g (.) is strictly convex (in  $e_t$ ) function measuring the discounted disutility of effort

Useful thing to note: The intertemporal maximization problem corresponds to the static problem of maximizing

$$v\left(e_{t}, x_{t}\right) = \lambda w_{t} e_{t} - g\left(e_{t}, x_{t}\right)$$

where  $w_t = \left(\frac{1+\rho}{1+r}\right)^t \hat{w}_t$  is the discounted wage in period t and g (.) is strictly convex (in  $e_t$ ) function measuring the discounted disutility of effort

- Participation decision can be introduced in two ways
  - Minimum effort (work only if  $e_t^* > \tilde{e}$ )
  - Fixed costs (work only if utility of working exceeds the fixed cost)

Useful thing to note: The intertemporal maximization problem corresponds to the static problem of maximizing

$$v\left(e_{t}, x_{t}\right) = \lambda w_{t} e_{t} - g\left(e_{t}, x_{t}\right)$$

where  $w_t = \left(\frac{1+\rho}{1+r}\right)^t \hat{w}_t$  is the discounted wage in period t and g (.) is strictly convex (in  $e_t$ ) function measuring the discounted disutility of effort

- Participation decision can be introduced in two ways
  - Minimum effort (work only if  $e_t^* > \tilde{e}$ )
  - Fixed costs (work only if utility of working exceeds the fixed cost)
- Predictions: Increase in  $\hat{w}_t$ 
  - increases the number of shifts
  - increases effort within a shift

# Neoclassical Model with Nonseparable Utility

• The predictions of the baseline model rely on the assumption of *time-separable utility* (only current consumption and effort matter).

# Neoclassical Model with Nonseparable Utility

- The predictions of the baseline model rely on the assumption of time-separable utility (only current consumption and effort matter).
- Suppose instead that workers maximize

$$v\left(e_{t},e_{t-1}\right)=\lambda e_{t}w_{t}-g\left(e_{t}\left(1+\alpha e_{t-1}\right)\right)$$

i.e. effort in the last period increases the disutility of effort in the current period (for simplicity,  $x_t$  is now dropped)

# Neoclassical Model with Nonseparable Utility

- The predictions of the baseline model rely on the assumption of time-separable utility (only current consumption and effort matter).
- Suppose instead that workers maximize

$$v\left(e_{t},e_{t-1}\right) = \lambda e_{t}w_{t} - g\left(e_{t}\left(1 + \alpha e_{t-1}\right)\right)$$

i.e. effort in the last period increases the disutility of effort in the current period (for simplicity,  $x_t$  is now dropped)

- Rational workers take this into account when deciding today's effort → higher wages may decrease effort within a shift
- Nevertheless, overall labor supply,  $\sum e_t$ , within the high wage period will increase
- Predictions: Increase in  $\hat{w}_t$ 
  - increases shifts
  - may increase or decrease effort within shifts

# A Model with Reference Dependent Utility

### Suppose that one-period utility is

$$v(e_t) = \begin{cases} \lambda \left( w_t e_t - \tilde{y} \right) - g \left( e_t, x_t \right) & \text{if } w_t e_t \ge \tilde{y} \\ \gamma \lambda \left( w_t e_t - \tilde{y} \right) - g \left( e_t, x_t \right) & \text{if } w_t e_t < \tilde{y} \end{cases}$$

where  $\tilde{y}$  is a daily **income target** and  $\gamma>1$  measures the degree of loss aversion

# A Model with Reference Dependent Utility

### Suppose that one-period utility is

$$v(e_t) = \begin{cases} \lambda \left( w_t e_t - \tilde{y} \right) - g \left( e_t, x_t \right) & \text{if } w_t e_t \ge \tilde{y} \\ \gamma \lambda \left( w_t e_t - \tilde{y} \right) - g \left( e_t, x_t \right) & \text{if } w_t e_t < \tilde{y} \end{cases}$$

where  $\tilde{y}$  is a daily **income target** and  $\gamma>1$  measures the degree of loss aversion

- This is an alternative to the expected utility theory, first proposed by Kahneman and Tversky (1979)
  - The idea is that individuals set a reference point,  $\tilde{y}$ , and consider lower outcomes as losses and larger as gains  $\rightarrow$  discontinuous drop in the marginal utility of daily earnings at  $\tilde{y}$

# A Model with Reference Dependent Utility

### Suppose that one-period utility is

$$v(e_t) = \begin{cases} \lambda \left( w_t e_t - \tilde{y} \right) - g \left( e_t, x_t \right) & \text{if } w_t e_t \ge \tilde{y} \\ \gamma \lambda \left( w_t e_t - \tilde{y} \right) - g \left( e_t, x_t \right) & \text{if } w_t e_t < \tilde{y} \end{cases}$$

where  $\tilde{y}$  is a daily **income target** and  $\gamma > 1$  measures the degree of loss aversion

- This is an alternative to the expected utility theory, first proposed by Kahneman and Tversky (1979)
  - The idea is that individuals set a reference point,  $\tilde{y}$ , and consider lower outcomes as losses and larger as gains  $\rightarrow$ discontinuous drop in the marginal utility of daily earnings at  $\tilde{y}$
- Predictions: Increase in  $\hat{w}_t$ 

  - increases shifts (utility of working in a given day increases)
    reduces effort within shifts (easier to cross the reference point)
  - the magnitude of effort reduction depends on  $\gamma$



### Results

- Effect on total revenue (Tables 1–3)
  - Increase of CHF1,000 (from the baseline level of roughly CHF3,500)  $\rightarrow$  intertemporal elasticity of substitution roughly  $\frac{1000/3500}{0.25} = 1.14$
  - consistent with all three models

### Results

- Effect on total revenue (Tables 1–3)
  - Increase of CHF1,000 (from the baseline level of roughly CHF3,500)  $\rightarrow$  intertemporal elasticity of substitution roughly  $\frac{1000/3500}{0.25}=1.14$
  - consistent with all three models
- Effect on the number of shifts (Tables 1–4)
  - Increase of roughly four shifts (from the baseline of roughly 11)  $\rightarrow$  wage elasticity of shifts roughly  $\frac{4/11}{0.25} = 1.45$
  - consistent with all three models

### Results

- Effect on total revenue (Tables 1–3)
  - Increase of CHF1,000 (from the baseline level of roughly CHF3,500)  $\rightarrow$  intertemporal elasticity of substitution roughly  $\frac{1000/3500}{0.25}=1.14$
  - consistent with all three models
- Effect on the number of shifts (Tables 1–4)
  - Increase of roughly four shifts (from the baseline of roughly 11)  $\rightarrow$  wage elasticity of shifts roughly  $\frac{4/11}{0.25}=1.45$
  - consistent with all three models
- Effect on effort (Figure 1, Table 5)
  - Reduction of revenue per shift of roughly 6 percent  $\rightarrow$  wage elasticity of revenue per shift roughly  $\frac{-0.06}{0.25} = -0.24$
  - inconsistent with the baseline model; consistent with nonseparable utility and reference dependent utility models



# Distinguishing between the Neoclassical and Reference Dependent Utility Models

- Fehr and Goette suggest a test based on a measurement of  $\gamma_i$ (individual-level loss aversion parameter)
  - Neoclassical model: this does not matter
  - RDU model: results driven by workers with high  $\gamma_i$
- Measure of  $\gamma_i$  obtained by revealed preferences to participate in two lotteries (Appendix A and B)
  - according to this measure 2/3 of the messangers are loss averse
- Only loss averse messengers reduce their effort (Figure 2, Table 6)

- Intertemporal substitution large
- Results most consistent with the reference dependent utility model (but: 1/3 of the messengers do not exhibit loss aversion
- External validity: how representative are bicycle messengers?